Physical Diffeomorphisms in Loop Quantum Gravity

نویسنده

  • Tim A. Koslowski
چکیده

We investigate the action of diffeomorphisms in the context of Hamiltonian Gravity. By considering how the diffeomorphism-invariant Hilbert space of Loop Quantum Gravity should be constructed, we formulate a physical principle by demanding, that the gauge-invariant Hilbert space is a completion of gauge(i.e. diffeomorphism-)orbits of the classical (configuration) variables, explaining which extensions of the group of diffeomorphisms must be implemented in the quantum theory. It turns out, that these are at least a subgroup of the stratified analytic diffeomorphisms. Factoring these stratified diffeomorphisms out, we obtain that the orbits of graphs under this group are just labelled by their knot classes, which in turn form a countable set. Thus, using a physical argument, we construct a separable Hilbert-space for diffeomorphism invariant Loop Quantum Gravity, that has a spin-knot basis, which is labelled by a countable set consisting of the combination of knot-classes and spin quantum numbers. It is important to notice, that this set of diffeomorphism leaves the set of piecewise analytic edges invariant, which ensures, that one can construct flux-operators and the associated Weyl-operators. A note on the implications for the treatment of the Gaussand the Hamilton-constraint of Loop Quantum Gravity concludes our discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretisations, Constraints and Diffeomorphisms in Quantum Gravity

In this review we discuss the interplay between discretization, constraint implementation, and diffeomorphism symmetry in Loop Quantum Gravity and Spin Foam models. To this end we review the Consistent Discretizations approach, which is an application of the master constraint program to construct the physical Hilbert space of the canonical theory, as well as the Perfect Actions approach, which ...

متن کامل

A Theory of Quantum Gravity from First Principles

When quantum fields are studied on manifolds with boundary, the corresponding one-loop quantum theory for bosonic gauge fields with linear covariant gauges needs the assignment of suitable boundary conditions for elliptic differential operators of Laplace type. There are however deep reasons to modify such a scheme and allow for pseudo-differential boundary-value problems. When the boundary ope...

متن کامل

Se p 20 02 SU ( 2 ) Loop Quantum Gravity seen from Covariant Theory

Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac brackets arising from dealing with the second class constraints (“simplicity” constraints). Within this framework, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections. We show the existence of a Lorentz connection generalizing the Ashtekar...

متن کامل

O ct 2 00 5 SU ( 2 ) Loop Quantum Gravity seen from Covariant Theory

Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac brackets arising from dealing with the second class constraints (“simplicity” constraints). Within this framework, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections. We show the existence of a Lorentz connection generalizing the Ashtekar...

متن کامل

Automorphisms in Loop Quantum Gravity

We investigate a certain distributional extension of the group of spatial diffeomorphisms in Loop Quantum Gravity. This extension, which is given by the automorphisms Aut(P) of the path groupoid P, was proposed by Velhinho and is inspired by category theory. This group is much larger than the group of piecewise analytic diffeomorphisms. In particular, we will show that graphs with the same comb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008